Environmental Science Education Programme "Towards supporting the development of another..."

Adopt a float for science skills advancement - a classroom initiative

Thomas Mtontsi

National Research Foundation South African Environmental Observation Network

- Objectives -

- Knowledge and Science skills development
- **Integration into School** Science curriculum
- Understanding, awareness and interest about our Oceans

"He climbs highest who helps another up" Zig Ziglar

Interactions - Scientists, Learners, Educators and Students

- Format -

School Based Monitoring

SAEON Kids monitoring Teams

33.8 34.0 34.2 34.4 34.6 34.8

TEMPERATURE (°C)
0. 4. 8. 12. 16. 20. 24.

400.
1600.
1600. -

Educator Support

Learner Support

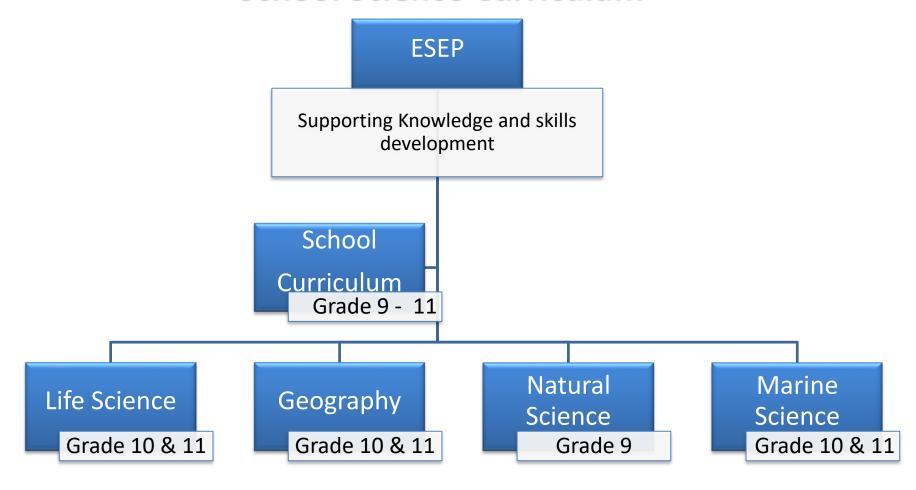
- "From face to face" "playing in virtual/online space" -

chool Based Monitoring

Making use of online or virtual Space

- Learner virtual Science Camps for grade 9 – 11
- Educator Workshops / webinar
- Building Marine Science Exhibits for the Cofimvaba Science Centre
- Online teaching resources
- Online science competitions such as an in-house iNaturalists

Educator Support



Activate Wir

- School Science Curriculum -

- School Science Curriculum -

- Scientific Inquiry and problem solving skills
- Construction and application of scientific knowledge.
- Science, Technology, environment and society

Life Science

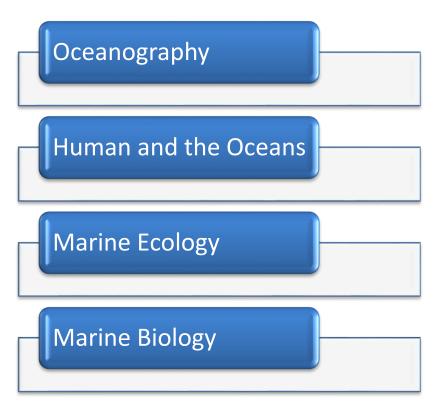
- Attitudes and values
- Geographical skills
- Asking geographical questions

Geography

Investigations and solve problem Using scientific knowledge responsibly

Natural Science

Marine Science


- Apply the scientific method
- Develop science process skills
- Understand the role of science in society

The Marine Science Curriculum statement...

Please see curriculum statement

31 Topics to choose from

Topic No	Grade 10 Term 1			
1	Introduction to Marine Sciences			
2	Scientific Inquiry			
3	History of Marine Sciences Research and Ocean Discovery			
4	Life Processes and the Chemistry of Life			
5	Cell Biology			
6	Origin of Planet Earth			
7	Interior of the Earth			
8	Geological time			
Hours Term 1 Gr 10				
Grade 1	0 Term 2			
9	Topography of the Ocean Floor and Ocean Basins			
10	Plate tectonics			
11	The Ocean Planet - Physical Properties of Water			
12	Energy Transmission in Water- Heat			
13	Energy Transmission in Water- Light and Light Absorption			
14	Introduction to Evolution and Evolution Mechanisms			
15	Basic Classification			
16	Evolutionary trends, Body plans, symmetry and life patterns			
17	Plankton			
18	Protists			
Hours T	erm 2 Gr 10			

Your Topic page

See next slide!?

- Topic Number and name
- The recommended term in which it should be taught
- The number of recommended hours which should be taken to teach the topic.
- The Depth, indicating level of detail.
- The Key Content Concepts
- Suggested practical's and investigations and
- Resources, which can be referred to.

Nutrient Cycles

Term 3 Strand – Ecology					
ne	Depth	Key Concepts	Investigations	Resource	
4 hours	The Depth of this topic	Ecology	Video clips are fine	Internet	
	is to introduce the	An ecosystem is defined as a community of organisms that interact with each other and the	for this section, as	YouTube	
	components of an	particular physical environment in which they live. Ecologists study ecosystems in detail.	a rocky shore		
	ecosystem and	1. An ecosystem is linked by a flow of energy and materials through the non-living (abiotic) as well	habitat will be		
	understand some of	as living (biotic) sections of the system.	investigated in		
	the complex	2. The biotic components include organisms from several trophic levels :	detail		
	interactions between	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7			
	them. While some	b. Consumers – heterotrophs (herbivores, carnivores, omnivores, detritivores) that ingest other			
	concepts will be dealt	organisms, using various feeding strategies (eg grazing, browsing, hunting, scavenging and filter			
	with separately, it is	feeding).			
	important for learners	c. Decomposers – saprophytic heterotrophs (mainly bacteria and fungi) break down organic			
	to combine them when	compounds after organisms die. This releases nutrients for use again by primary producers.			
	looking at specific	3. Feeding relationships in an ecosystem can be indicated as food chains or webs , or graphically as			
	ecosystems.	food pyramids of number, biomass or energy.			
		4. Inorganic nutrients (eg carbon, nitrogen and oxygen) are cycled through ecosystems in a nutrient			
		cycle (Detail is provided in sections on nutrient cycle.)			
		5. Energy is converted to food by producers and passed along the food chain, with each level			
		converting some of the energy to other forms in order to stay alive, until eventually the energy			
		(food) is used up . Thus we refer to – and can graphically represent – energy flow through an			
		ecosystem.			
		6. Several interactions occur between organisms in an ecosystem, including inter- and intraspecific			
		competition, and predation.			
		7. Symbiotic relationships also occur (parasitism, commensalism and mutualism).			
		(Unpack these terms and concepts with marine examples – eg parasitic isopods and fish tapeworms,			
		remora and shark, pilot fish and shark, cleaner wrasse, and clown fish and anemone. Discuss			
		coevolution as an extension of symbiosis.)			
		8. Five South African marine ecosystems are studied: the open ocean, rocky shores, sandy shores,			
		kelp forests and estuaries.			
		kelp forests and estuaries.			

Grade 10 Marine Science Educator Training Manual

Select a topic e.g. Salinity

What to do!?

- Background Content on topic
- Include illustrations, pictures, video, etc.
- Develop an activity to help understanding
- A PowerPoint presentation

A typical lesson plan can be a helpful approach...

Resources links – Examples of Activities

Activities (Argo Floats on Rise Articulate)

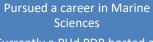
https://rise.articulate.com/share/o4pL00ldfVXxUz72YaJyZZYq3JMg9Ak-#/lessons/w39djH5LEOMWkT0kUo8RAtlWQDrpjD25

Activity 3 (Argo Float on google form)

https://rise.articulate.com/share/o4pL00ldfVXxUz72YaJyZZYq3JMg9Ak-#/lessons/MXanr32Z0AaXsajJfEDhYEEKtPHf6bUc

- Tracking, Impact & Support-

Tania Duba



Tania Lab based observations on data collected at sea for a high school project.

Currently a PHd PDP hosted at SAEON Egagasini Node and Supervised by Prof Juliet Hermes Graduated MSc

Tania Lab – Ocean Chemistry

Entered Eskom Expo for young Scientists

International
Conference with NRFSAEON Egagasini Team
members

Sivuyisiwe Mbede

•A member if the NRF — SAEON Egagasini node Monitoring team. A programme of the Science Engagement portfolio.

NRF – SAASTA Volunteer

DSI – Ntional Youth Service Programme - 2020

Hosted by the NRF – SAEON Egagasini
Interacting with educators during a teacher workshop.

CPUT Marine Science Diploma and Advance Diploma Graduate

Part of the NRF Science Engagement

Currently studying BSc Hon in Oceanography at UCT and supervised by Prof Juliet Hermes

Pozisa Nqenqa

As a NRF-SAEON Kid entered Cape Town Eskom Expo for young Scientist and a Bronze medal winner

Studied and Completed Diploma in Marine Science with CPUT - 2020

Currently a SAASTA Volunteer hosted by the NRF – SAEON Egagasini Node

Environmental Science Education Programme - Joseph Duda -

- Grade 12
- Sophumelela High School
- SAEON Kid / School based monitoring Team
- Project: Determine the distribution of plankton from offshore to inshore

Thank you!!

Thomas Mtontsi
Science Engagement
NRF – SAEON Egagasini Node
t.mtontsi@saeon.nrf.ac.za
+27813575658

